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We perform wall-modeled large-eddy simulation (WMLES) of the Gaussian bump using
the latest implementation of the Building-block Flow model (BFM) [1, 2]. BFM is a unified
subgrid-scale (SGS) and wall model for WMLES that devises the flow as a collection of building
blocks. The model is rooted in the assumption that simple canonical flows contain the essential
physics to provide accurate predictions in more complex scenarios [3]. BFM is implemented via
artificial neural networks and accounts for a limited set of wall-attached turbulence, adverse
pressure gradient effects, and separation. The first version of BFM has been already tested
on a complex aircraft geometry, showing improvements with respect to standard WMLES
approaches [1]. Here, we assess the robustness and capabilities of the second version of BFM
in the Gaussian Bump benchmark with emphasis on affordable grid resolutions. The results
are compared with available experimental data, as well as results computed using standard
WMLES. BFM captures the location and size of the separation bubble with less than 1% error
for the coarse grid resolutions considered, improving on standard WMLES approaches. The
error in the prediction of the pressure coefficient, friction coefficient, and mean velocities profiles
in the second half of the separation bubble is also improved and robust under different grid
resolutions. However, the results are still unsatisfactory in the first half of the separation bubble.
The mismatch was explained by the lack of training data for BFM to account for strong flow
reversal. Future versions of BFM will incorporate additional adverse pressure gradient effects
to enhance model performance.

I. Nomenclature

𝑎∞ = free-stream sound speed
𝐶 𝑓 = friction coefficient
𝐶𝑝 = pressure coefficient
ℎ = half-height of the channel
𝐼𝑖 = 𝑖-th invariant of the gradient velocity tensor
𝑘 = correcting factor for a𝑣𝑡
𝐿 = bump length
𝑀 = 𝑈∞/𝑎∞ Mach number
𝑝 = pressure
Re = Reynolds number
R = rate-of-rotation tensor
S = rate-of-strain tensor
𝑈 = average streamwise velocity
𝑈∞ = free-stream streamwise velocity
𝑢 ∥ = magnitude of the velocity parallel to the wall
𝑢𝑡 = top wall velocity for turbulent Poiseuille-Couette flows
𝑥 = streamwise coordinate
𝑥𝑟 = mean reattachment point at 𝑦/𝐿 = 0
𝑥𝑠 = mean separation point at 𝑦/𝐿 = 0
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𝑦 = vertical coordinate
𝑦cv = wall normal distance to a control volume
𝑧 = spanwise coordinate
Δ = characteristic grid resolution
a = kinematic viscosity
a𝑡 = eddy viscosity
a𝑣𝑡 = eddy viscosity predicted by the Vreman model
𝜌 = fluid density
𝜏𝑤 = shear stress at the wall
DSM = Dynamic Smagorinksy model
LES = Large-Eddy simulation
RANS = Reynolds-averaged Navier-Stokes
SGS = Subgrid-scale
WMLES = Wall-modelled Large-Eddy simulation
PC = turbulent Poiseuille-Couette flow

II. Introduction

Computational fluid dynamics (CFD) has played a key role in the modern aerospace industry for the aerodynamic
design of aircraft. However, state-of-the-art CFD models are still unable to comply with the stringent accuracy

requirements and computational efficiency demanded by the industry. These limitations are imposed, largely, by the
defiant ubiquity of turbulence and the necessity of faithful models able to capture key physical flow phenomena.

An example of a flow topology that evidences the limitations of current CFD methodologies is turbulent boundary-
layer separation. Since boundary-layer separation and reattachment can significantly affect the portion of friction
drag over an aerodynamic surface [4], accurate prediction of these flow topology remains amongst the most pressing
challenges for CFD, as highlighted in the NASA CFD Vision 2030 [5]. To that purpose, a turbulent separated flow
validation test case was designed in collaboration between Boeing and the University of Washington. The test consists
of a three-dimensional tapered hump or “Gaussian bump”, wider in the spanwise direction than the streamwise direction
[6]. Owned to its shape, the flow is subjected to a smooth-body separation, whose onset and reattachment points are
more challenging to predict than geometrically induced separated flows [7–9].

Numerical simulations of the Gaussian bump with different degrees of fidelity have been already performed.
Williams et al. [6] conducted Reynolds-averaged Navier-Stokes (RANS) simulations comparing the pressure coefficient
against experimental measurements. They tested the Spallart-Allmaras (SA) turbulence model and the SA model with
rotation correction (SARC). In both cases, the models failed to capture the inflection point in the pressure coefficient
visible in the experiments. Later, Iyer and Malik [10] performed wall-modeled large eddy simulations (WMLES)
of the Gaussian bump. They reported that WMLES is unable to predict flow separation in the mean when medium
resolution grids are used. However, the same authors [11] later showed that WMLES is able to capture the separation and
reattachment in a fine grid with about 250 Million grid points. In the same vein, Agrawal et al. [7] performed WMLES
simulations testing different grid resolutions and subgrid-scale (SGS) models. They showed that some models failed to
capture the separation even at the finest grid resolution tested. They also observed a non-monotonic convergence to the
solution with grid refinement using standard models, which remains a key challenge of WMLES [12, 13].

The poor performance of current WMLES approaches calls for the exploration of new venues to develop robust and
accurate models for wall-model large-eddy simulation. Here, we perform WMLES of the Gaussian bump using the latest
implementation of the Building-block Flow model (BFM) [1, 2] with emphasis on coarse grid resolution and consistent
monotonic convergence. BFM is a unified SGS and wall model for LES that devises the flow as a collection of building
blocks. The core assumption of the model is that simple canonical flows contain the essential physics to provide accurate
predictions in more complex flows. It is also envisaged to provide accurate results with coarse resolutions (affordable for
industrial applications). This model has been already tested on a complex aircraft geometry showing improvements with
respect to standard WMLES [1]. We use the Gaussian bump benchmark to further assess the robustness and capabilities
of the BFM. The results are compared with available experimental data and standard WMLES models.
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Fig. 1 Schematic of thr building-block flow model (BFM). The panel shows a cross section of a given grid close
to a wall. For a control volume that does not touch a wall (red cell) the model computes a𝑡 = 𝑓outer from the local
instantaneous values of S and R. For a control volume close to the wall (green cell) the model computes a𝑡 = 𝑓wall
from the local instantaneous values of S, R and 𝑢 ∥ ; and 𝜏𝑤 = 𝑔wall from the local instantaneous value of 𝑢 ∥ . Note
that the schematics of the ANNs do not depict the actual number of layers and neurons.

III. Methodology

A. Building-block flow model

1. Model architecture
The main modeling hypothesis of the BFM is that the SGS physics of complex flows can be locally mapped into

the small scales of simpler canonical flows [3]. Therefore, the BFM is capable of accurately predicting the statistical
properties of complex flows as long as the canonical flows used for training are representative of the (missing) SGS flow
physics. A detailed discussion about the modeling assumptions of the BFM can be found in Lozano-Durán and Bae [2].
Here, we test the ability of a limited collection of simple turbulent Poiseulle-Coutte flows to model separation in the
Gaussian bump.

Figure 1 displays the main components of the BFM. The anisotropic component of the SGS stress is given by the
eddy-viscosity model

𝜏 = −2a𝑡S, (1)

where S is the rate-of-strain tensor and a𝑡 is the eddy viscosity. The latter is parameterized using artificial neural
networks (ANNs) as

a𝑡 = 𝑓outer (𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5; \), (2)
a𝑡 = 𝑓wall (𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝑢 ∥ ; \), (3)

where the function 𝑓wall computes the eddy-viscosity at the control volumes that are in contact with the wall; and the
function 𝑓outer computes a𝑡 at the rest of control volumes in the fluid domain. The inputs for 𝑓wall and 𝑓outer are five of
the invariants of the rate-of-strain and the rate-of-rotation (R) tensors, defined as [14]

𝐼1 = tr
(
S2) , 𝐼2 = tr

(
R2) ,

𝐼3 = tr
(
S3) , 𝐼4 = tr

(
SR2) ,

𝐼5 = tr
(
S2R2) , (4)

together with the magnitude of the velocity parallel to the wall (𝑢 ∥ ) for 𝑓wall. The vector \ contains the variables a and
the characteristic grid size, Δ, that are used for non-dimensionalization, as detailed below.

The model for 𝜏𝑤 is a simplified version of the one presented in Lozano-Durán and Bae [2] and the reader is referred
there for more details. The current version does not include a classification and only uses 𝑢 ∥ , the wall-normal distance
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Fig. 2 Example of building block flows. (a) Turbulent channel flow; (b) turbulent PC flow with a mild pressure
gradient (PCm); and (c) turbulent PC flow with a stronger pressure gradient (PCs), leading to flow separation at
the bottom wall.

to the control volume (𝑦cv), and \ = [a,Δ] as inputs

𝜏𝑤 = 𝑔wall (𝑢 ∥ , 𝑦cv; \). (5)

For the control volumes adjacent to the walls (𝑔wall and 𝑓wall), the input and output quantities are non-dimensionalized
using viscous scaling (a and Δ). For the rest of the control volumes ( 𝑓outer) the input and output variables are non-
dimensionalized using semi-viscous scaling ((

√
𝐼1a)1/2 and Δ). The choices above yielded the best performance during

the training of the ANNs. Finally, the ANNs are fully-connected feed-forward networks: 𝑓wall consists of 8 layers with
[7, 8, 8, 8, 7, 6, 5, 3] neurons per each layer; 𝑓outer consists of 10 layers with 16 neurons per layer; and 𝑔wall consists of 6
layers with 40 neurons per layer.

2. Training data generation
In the present version of the BFM∗, we consider two building-block flows: turbulent channel flows, and turbulent

Poiseuille-Couette (PC) flows. In both cases, the incompressible flow is confined between two infinite parallel walls
separated by a distance 2ℎ. Figure 2 shows the set-up for both canonical cases. In the turbulent channel flow, the walls
are static, and a constant pressure gradient drives the flow in the streamwise direction. In the turbulent PC flow, the
bottom wall is static, whereas the top wall moves at a constant speed (𝑢𝑡 ) in the parallel direction, and an adverse
pressure gradient (𝑑𝑃/𝑑𝑥) is applied in the direction opposite to 𝑢𝑡 . For the turbulent channel flows we consider 6
different Reynolds numbers: Re𝜏 = 180, 550, 950, 2, 000, 4, 200 and 10, 000, where Re𝜏 = 𝑢𝜏ℎ/a and 𝑢𝜏 =

√︁
𝜏𝑤/𝜌.

For the turbulent PC cases, the pressure gradient ranges from mild to strong, leading to flow reversal on the bottom wall.
The PC building-block flows are chosen as representative of separated flows. In particular, three cases are considered:
the case with a mild pressure gradient, which features a low positive (i.e., in the same direction as 𝑢𝑡 ) velocity at the
bottom wall; a case with incipient ‘separation’ (𝑢 ≈ 0 close to the bottom wall); and a case with flow reversal (𝑢 < 0
close to the bottom wall). They are labeled as PCm, PCs and PCr, respectively, and their Reynolds numbers based on
the pressure gradient are Re𝑃 =

√︁
ℎ3d𝑃/d𝑥/a = 340, 680 and 962. For the three cases, the Reynolds number based on

the top wall velocity is ReU = 𝑢𝑡ℎ/a = 22, 360. Their velocity profile is shown in Fig. 3 for reference.
To generate the data, we perform WMLES simulations of the building blocks adjusting a𝑡 to match the mean DNS

velocity profile. The simulations are performed in charLES, which enables the model to account for the numerical
errors of the flow solver. This is the main improvement of the current version of BFM with respect to its predecessor [1].
The eddy viscosity is adjusted by finding a correcting factor 𝑘 , to the eddy-viscosity predicted by the Vreman SGS
model (a𝑣𝑡 ) [15], namely

a𝑡 (𝑥, 𝑦, 𝑧, 𝑡) = a𝑣𝑡 (𝑥, 𝑦, 𝑧, 𝑡)𝑘 (𝑦) (6)

The correcting factor is in turn computed by solving the optimization problem

arg min
𝑘 (𝑦)

∫
|𝑈DNS (𝑦) −𝑈 (𝑦) |2𝑑𝑦 (7)

where 𝑈DNS is the mean velocity profile from DNS profile and 𝑈 is the mean velocity profile computed using the eddy
viscosity in Eq. (6). The free Conjugate-Gradient algorithm [16] and the Bayesian Global optimization algorithm

∗BFM-v0.2.0
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Fig. 3 Average velocity profile of the turbulent PC cases. (red line) PCm; (blue line) PCs; and (yellow line) PCr.

[17, 18] are used to minimize Eq. (7) for the turbulent channel and the turbulent PC flows, respectively. The optimization
process for a given case is as follows: 1) an LES simulation is performed with a fixed 𝜏𝑤 –equal to the correct value
from DNS simulations, 𝜏DNS

𝑤 – and with an initial random 𝑘 (𝑦); 2) the simulation is run until the statistical steady state is
reached; 3) the integral in Eq. (7) is evaluated, and 4) a new guess of 𝑘 (𝑦) is provided by the optimizer. This approach
is continued until the condition

|𝑈DNS (𝑦) −𝑈 (𝑦) |
𝑈DNS (𝑦)

< 0.03

at each 𝑦 location for the turbulent channel flow cases is satisfied. For the turbulent PC cases, this condition was too
stringent, since velocities are close to 0 near the wall, and we relaxed the condition to

|𝑈DNS (𝑦) −𝑈 (𝑦) |
𝑢𝑡

< 0.02.

The LES cases to generate the training data were conducted in a computational domain 𝐿𝑥×𝐿𝑦×𝐿𝑧 = 4𝜋ℎ×2ℎ×2𝜋ℎ,
where ℎ is the channel half-height. The time step was chosen to ensure that the Courant–Friedrichs–Lewy number is
less than 2. The grid size (Δ) was kept constant for the whole fluid domain (i.e., no near-wall refinement). We performed
simulations for Δ ≈ 0.2ℎ and 0.1ℎ for the turbulent channel simulations and Δ ≈ 0.1ℎ for the turbulent PC simulations.
boundary layer thickness, and are representative of affordable computational meshes for industrial applications.

The mean DNS quantities for the channel flows with Re𝜏 = 180, 550, 950, 2000 and 4200 corresponds to those from
the database by Jimenéz and coworkers [19–21]. The DNS data for the channel flow with Re𝜏 = 10, 000 is obtained
from Hoyas et al. [22]. Data for the mean DNS quantities of the turbulent Poiseuille-Couette flows are generated using
our in-house code. More details on the a priori testing can be found in Ling et al. [1] for the previous version of the
model.

B. Case description
The geometry of the bump is given by the analytical formula [6]

𝑧(𝑥, 𝑦) = ℎ0

2
exp

(
−

(
𝑥

𝑥0

)2
) [

1 + erf

(
𝐿
2 − 2𝑦0 − |𝑦 |

𝑦0

)]
, (8)

where 𝑥, 𝑦 and 𝑧 are the streamwise, spanwise and vertical directions, respectively; 𝐿 is the length of the bump; and
the parameters ℎ0 = 0.085𝐿, 𝑥0 = 0.195𝐿 and, 𝑧0 = 0.06𝐿 define the shape of the bump. Cross-sectional views of the
bump in 𝑦/𝐿 = 0 and 𝑥/𝐿 = 0 planes are displayed in Figs. 4a and 4b, respectively.

The non-dimensional parameters that define the flow are the Reynolds number based on the bump length and
the free-stream velocity (𝑈∞), Re𝐿 = 𝑈∞𝐿/a, where a is the free-stream kinematic viscosity; and the Mach number,
𝑀 = 𝑈∞/𝑎∞, where 𝑎∞ is the free-stream speed of sound. The present simulations were performed at Re𝐿 = 3.4 · 106

and 𝑀 = 0.176. These values are the same as in Williams et al. [6], who reported the pressure coefficient along the
centerline; and they are comparable to those in Gray et al. [23], who experimentally computed the friction coefficient
and the flow field for Re𝐿 = 2 · 106 and 𝑀 = 0.2.
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Fig. 4 Cross-sectional view of the surface defined by Eq. (8). (a) 𝑦/𝐿 = 0 and (b) 𝑥/𝐿 = 0.

(a)

(b)

Fig. 5 Grid structure in the 𝑦/𝐿 = 0 plane. (a) Extra coarse grid; (b) Coarse grid. Note that the pictures does
not include the whole domain in the streamwise direction.

To assess the performance of the BFM (detailed in § III.A), we compare the results with the predictions obtained
using the Dynamic Smagorinksy model (DSM) [24] as the subgrid-scale (SGS) model and the equilibrium wall model
(EQWM) [25]. All the simulations were performed using the code charLES from Cascade Tech., Inc. [26]. The solver
integrates the filtered Navier-Stokes equations using a skew-symmetric finite volume formulation that has reduced
dispersion error and is at least second-order accurate. The numerical discretization relies on a flux formulation that is
approximately entropy preserving in the inviscid limit, thereby limiting the amount of numerical dissipation added into
the calculation. The time integration is performed with an explicit five-stage third-order strong stability preserving
Runge-Kutta method. The mesh generator is based on a Voronoi hexagonal close packed point-seeding method which
automatically builds high-quality meshes for arbitrarily complex geometries with minimal user input.

C. Computational set-up
The computational domain is a rectangular prism that extends ±1.5𝐿 in the streamwise direction, ±0.5𝐿 in the

spanwise direction and from 0𝐿 to 0.5𝐿 in the vertical direction. The lateral and top boundaries are free-slip, a constant
uniform inflow is imposed at the inlet, and the non-reflecting characteristic boundary condition with constant pressure is
applied at the outlet. These boundary conditions are the same as in Iyer and Malik [10] and Agrawal et al. [7].

We consider two grids: a coarse grid, and an extra coarse grid, which are depicted in Figs. 5a and 5b, respectively.
Both grids have three levels of isotropic refinement. Each refinement level has roughly 10 control volumes along the
wall-normal direction and the average size of each level is twice the size of the previous level. The grid size of the
layer closer to the wall is the smallest and is referred to as Δmin. For the extra coarse grid Δmin/𝐿 = 2.2 · 10−3, and for
the coarse grid Δmin/𝐿 = 1.4 · 10−3. The latter is similar to the coarse grid used in Agrawal et al. [7], and from there
the name. The grid size and number of elements for each grid are compiled in Table 1. The simulations have been
performed with a varying time step to ensure that the Courant–Friedrichs–Lewy number is less than 2.
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Mesh Δmin/𝐿 𝑁cv

Extra coarse 2.2 · 10−3 8.7 · 106

Coarse 1.4 · 10−3 20.3 · 106

Table 1 Minimum grid size and number of control volumes, 𝑁cv.

IV. Results
We assess the performance of the BFM to predict average quantities of interest in the Gaussian bump. In particular,

we examine the average wall pressure and friction coefficients, the location of the separation bubble, and the mean
velocity profiles. The results are compared to those from Dynamic Smagorinksy model (DSM) with the equilibrium
wall model (EQWM). In the following, we refer to this model as DSM-EQWM-X, where X is the grid: ExtraC(oarse) or
C(oarse). All the quantities have been averaged for at least 30𝑈∞/𝐿 convective time units after the initial transient has
been discarded.

The average pressure and friction coefficients are computed as

𝐶𝑝 =
𝑝 − 𝑝∞
1
2 𝜌∞𝑈

2
∞
, 𝐶 𝑓 =

𝜏𝑤
1
2 𝜌∞𝑈

2
∞
,

where 𝑝∞ and 𝜌∞ are the reference pressure and density, respectively, and 𝑝 and 𝜏𝑤 are averaged over time. Figure 6a
shows the evolution of the pressure coefficient at the centerline (𝑦/𝐿 = 0). The experiments show a region with a
favorable pressure gradient (FPG) before the apex of the bump (𝑥/𝐿 < 0), followed by a region with an adverse pressure
gradient (APG) (𝑥/𝐿 > 0). Due to flow separation, 𝐶𝑝 is not symmetric with respect to the 𝑥-axis, but there is an
inflection point at 𝑥/𝐿 = 0.1 [6], indicating the mean separation point (𝑥𝑠). The boundary layer reattaches on average
at 𝑥𝑟/𝐿 = 0.36 [23]. We can observe that all the models predict the evolution of the pressure coefficient in the FPG
region regardless of the grid resolution. In the APG region, the DSM-EQWM-ExtraC fails to predict the inflection
point, leading to higher values of 𝐶𝑝 in the recirculation region compared to the experiments. DSM-EQWM-C captures
the inflection point in 𝐶𝑝 linked to the onset of separation; however, the pressure inside the separation bubble is
overpredicted.

For the BFM, the inflection point is correctly captured for both grid resolutions, but the pressure coefficient is higher
than the experimental value. The 𝐶𝑝 predicted by the BFM remains constant in the first half of the separation bubble,
matching the experimental results in the second half and outperforming the results from DSM-EQWM-C. The 𝐶𝑝

predicted by the BFM approaches the experimental results with grid refinement but is less sensitive to changes in the
grid resolution than DSM-EQWM.

The prediction of the friction coefficient is shown in Fig. 6b. The experimental values show an abrupt increase of
𝐶 𝑓 in the FPG region towards the apex of the bump, where the friction coefficient reaches its maximum value. This
is followed by a sudden drop in the APG, where 𝐶 𝑓 < 0 in the recirculation region. The trend of 𝐶 𝑓 in the FPG
is consistent for all the models regardless of the grid resolution. Although none of the models is able to match the
experimental results in the FPG region, it is interesting to note that BFM underpredicts the wall shear stress. This is
expected as the building-blocks used for training BFM do not include cases with favorable pressure gradients. Also,
note that the friction coefficient predicted by the DSM-EQWM-ExtraC for 𝑥/𝐿 < −1 is lower than the experimental
value and the BFM predictions. This is due to the fact that the flow is laminar for DSM-EQWM-ExtraC for 𝑥/𝐿 < −1,
contrary to the flow obtained using BFM for the same grid resolution, which remains turbulent along 𝑥.

The mean separation point (𝑥𝑠) and reattachment point (𝑥𝑟 ) are defined as the streamwise locations where 𝐶 𝑓 = 0.
For the sake of comparison, Table 2 compiles the mean separation point and mean reattachment point along the
centerline for the different cases. DSM-EQWM-ExtraC predicts larger friction coefficients than the experimental results
for 𝑥/𝐿 > 0. As a result, the recirculation region is smaller and the onset of separation is delayed. DSM-EQWM-C
predict a 𝐶 𝑓 closer to the experiment results. The prediction of the separation point is improved, and the size of the
bubble increases (0.22𝐿), although it is still smaller than the experimental bubble (0.26𝐿).

The performance of BFM-ExtraC in the APG region is superior to DSM-EQWM-ExtraC. Although the prediction
of 𝑥𝑠 is identical, BFM-ExtraC captures the exact location of reattachment, improving even upon DSM-EQWM-C. The
values of 𝐶 𝑓 at 𝑥/𝐿 > 0.1 are also closer to the experimental values: the friction coefficient is slightly underpredicted in
the first half of the recirculation region, in line with the pressure coefficient; but it matches the experimental values for
𝑥/𝐿 ≳ 0.23. By increasing the grid resolution, BFM-C is able to match the exact location for 𝑥𝑠 . Therefore, it is likely
that the extra coarse grid does not have a sufficient number of control volumes per boundary layer thickness to predict
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Fig. 6 (a) Average pressure coefficient and (b) average friction coefficient over the bump surface at at 𝑦/𝐿 = 0.
Line colors correspond to (light blue) DSM-EQWM-ExtraC; (dark blue) DSM-EQWM-C; (light red) BFM-
ExtraC; and (dark red) BFM-C cases. White circles in (a) correspond to experimental results from Williams et
al. at Re𝐿 = 3.41 · 106, 𝑀 = 0.17, and (b) experimental results from Gray et al. [23] at Re𝐿 = 2 · 106, 𝑀 = 0.2.

Case 𝑥𝑠/𝐿 𝑥𝑟/𝐿
Gray et al. [23] 0.10 0.36
DSM-EQWM-ExtraC 0.13 0.25
DSM-EQWM-C 0.09 0.31
BFM-ExtraC 0.13 0.36
BFM-C 0.10 0.36

Table 2 Location of mean separation point (𝑥𝑠) and mean reattachment point (𝑥𝑟 ) along the centerline for the
different cases

the separation at the exact location. We also note that the prediction of 𝐶 𝑓 improves by increasing grid resolution, as
observed for the pressure coefficient.

Figure 7 displays the average streamwise velocity in the 𝑦/𝐿 = 0 plane for all the cases. The recirculation region
corresponds to zones colored in red and yellow. As inferred from 𝐶𝑝 and 𝐶 𝑓 measurements, Fig. 7a shows that the
DSM-EQWM-ExtraC predicts a small separation bubble. A quantitative improvement is observed for BFM-ExtraC
(Fig. 7b), although the separation bubble is thinner than the one measured experimentally (see Fig. 9 in Gray et al. [23]).
Refining the grid improves the prediction of the separation bubble for both models (compare Fig. 7b,d to Fig. 7a,c,
respectively). In particular, BFM-C provides the separation bubble that resembles the most to the experimental results
in terms of size and shape.

By comparing the recirculation regions in Fig. 7b and 7d, we see that the magnitude of the velocity close to the
wall is higher for the DSM-EQWM than for the BFM. Since higher velocities can be linked to a lower pressure and
higher (negative) friction coefficients, a likely reason for the smaller values of 𝐶𝑝 and 𝐶 𝑓 predicted BFM may be the
underprediction of the velocity magnitude in the region with strong APG. To further support this hypothesis, Fig. 8
depicts the average velocity profile at selected streamwise locations where experimental data is available [23]. Upstream
𝑥𝑠 (probe 1 ), the flow is attached, and all models provides a velocity profile similar to the experimental mean velocity
profile. At the beginning of the separation bubble (probe 2 ), DSM-EQWM-C predicts a reversal flow stronger than the
experiments close to the wall, whereas BFM-C predicts a lower velocity, in line with our hypothesis. As the separation
bubble further develops downstream (probe 3 ), all models fail to capture the strong reversal velocity. This is consistent
with the higher pressure and lower friction predicted by the models at 𝑥/𝐿 ≈ 0.23. At the second half of the separation
bubble (probe 4 ), the magnitude of the negative velocity close to the wall is milder and is accurately captured by the
BFM as opposed to DSM-EQWM, which predicts re-attatched flow.

From the previous discussion, we can infer that BFM tends to underpredict the velocity in regions with strong flow
reversal. The most likely explanation is that the model has not been trained with building-blocks representative of this
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case. Namely, among the 9 different blocks used for training, only one case, PCr (Re𝑃 = 962) contains a region with
flow reversal. Therefore, two model improvements will be adopted in the future. First, the model will be further trained
with PC cases showing stronger reversal flows (i.e., higher Re𝑃). Secondly, we will add a classification step for the
control volumes close to the wall, that will label each control volume as a different type of flow. Depending on the label,
different ANNs –trained only with a particular type of flow– will be used to predict a𝑡 and 𝜏𝑤 . In this manner, the ANNs
can be tailored to provide more accurate results. Note that, this additional step was already included in Lozano-Durán
and Bae [2] and Ling et al. [1], but it was not implemented in the present work for simplicity. It is anticipated that these
modifications will improve the performance of BFM, especially in the separation bubble.

V. Conclusions
We have examined the performance of the latest implementation of the building-block flow model (BFM)† for

large-eddy simulation. The model is devised to address the challenges faced by CFD in the industry, i.e., the need for
accurate and robust solutions at an affordable computational cost. The core assumption of BFM is that the subgrid-scale
physics of complex flows can be mapped into the physics of simpler canonical flows [2, 3].

The model consists of an SGS model that computes the eddy viscosity in the flow and a wall model that predicts the
wall shear stress. The eddy viscosity and wall shear stress are parameterized using artificial neural networks (ANNs).
The training data are generated from LES simulations of the building blocks whose eddy viscosity has been controlled
to yield the correct mean velocity profile. The correction step is formulated as an optimization problem and solved
by means of a free Conjugate-Gradient method with Bayesian optimization. The training data are generated using
coarse grids to ensure the applicability to industrial cases where finer meshes are not affordable. In the current version
tested, the model has been trained using a limited set of data from turbulent channel flows at different Re𝜏 and turbulent
Poiseuille-Couette flows with varying adverse pressure gradient.

The performance of BFM was evaluated in the Gaussian bump [6] and the results were compared to the Dynamic
Smagorinksy model with the equilibrium wall model (DSM-EQWM). We tested both models in coarse grids, where
standard WMLES approaches show difficulties in predicting smooth-body separation [10]. The results show that
BFM consistently improves on the prediction of the location and size of the separation bubble when compared to
DSM-EQWM simulations. This improvement is particularly noticeable for the coarsest grid tested, where DSM-EQMW
predicts almost no separation. Compared to experimental measurements, BFM accurately predicts the pressure and
friction in the second half of the separation bubble. However, it yields a higher pressure and lower friction in the first
half of the separation bubble. The mismatch was explained by the lower velocities predicted by the SGS model in the
regions with a strong flow reversal. To improve model performance, we will continue the training of the model with
additional cases accounting for adverse pressure gradient effects. A classifier will be also added to label the type of flow
for the control volumes close to the wall, enabling the use of tailored ANNs.
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