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We perform wall-modeled large-eddy simulation (WMLES) of the NASA Common Re-

search Model High-Lift (CRM-HL) using the Building-block Flow Model (BFM) [1]. BFM is

a unified subgrid-scale (SGS) and wall model for WMLES that devises the flow as a collection

of building blocks. The model is rooted in the assumption that simple canonical flows contain

the essential physics to provide accurate predictions in more complex scenarios [2]. BFM is

implemented via artificial neural networks (ANNs) and accounts for a limited set of laminar

flows, wall-attached turbulence, adverse pressure gradient effects, and separation. The model

uses a Bayesian classifier, which identifies the contribution of each building block in the flow,

and an ANN-based predictor, which estimates the eddy viscosity based on the building-block

units. The training data are directly obtained from WMLES with an exact SGS/wall model

for the mean quantities to guarantee consistency with the numerical discretization and grid-

ding strategy. Here, we validate the BFM in the NASA CRM-HL with an emphasis on grid

resolutions that are affordable to attain fast turnaround times in the design cycle. We show

that BFM offers improved and/or more consistent results in the prediction of the lift, drag,

and pitching moment coefficients compared to conventional WMLES approaches, especially at

high angles of attack. Future versions of the BFM will incorporate additional building-block

flows to enhance the predictive capabilities of the model.

I. Nomenclature

0∞ = free-stream sound speed

�! = lift coefficient

�� = drag coefficient

�" = pitching moment coefficient

d%/dG = mean streamwise pressure gradient

ℎ = half-height of the channel

�8 = 8-th invariant of the gradient velocity tensor

" = *∞/0∞ Mach number

!G , !H , !I = streamwise, wall-normal, and spanwise size of the channel

? = pressure

Re = Reynolds number

R̄ = rate-of-rotation tensor

S̄ = rate-of-strain tensor

*∞ = free-stream streamwise velocity

D ‖ = magnitude of the velocity parallel to the wall

DC = top wall velocity for turbulent Poiseuille-Couette flows

G = streamwise coordinate

H = vertical coordinate

I = spanwise coordinate

Δ = characteristic grid resolution

a = kinematic viscosity

aC = eddy viscosity
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d = fluid density

gF = shear stress at the wall

PC = Poiseuille-Couette

EQWM = Equilibrium wall model

DSM = Dynamic Smagorinsky model

LES = Large-Eddy simulation

RANS = Reynolds-averaged Navier-Stokes

SGS = Subgrid-scale

WMLES = Wall-modeled Large-Eddy simulation

II. Introduction

C
omputational Fluid Dynamics (CFD) stands as an essential tool for the design and optimization of aero/hydro-

vehicles relevant to the industry. However, CFD of realistic vehicles poses a unique challenge due to the ubiquity

of complex flow physics. Among the most pressing challenges, we can cite turbulent flows in the presence of adverse

pressure-gradient effects, flow separation, shockwaves, laminar-to-turbulent transition, and strong mean unsteadiness,

to name a few [3, 4]. While there are CFD models that are accurate in predicting one or two particular scenarios, no

model is capable of performing accurately across all the flow phenomena described above [5, 6]. The limitations above

raise the following question: how to devise a unified CFD closure model capable of accounting for a rich collection of

flow physics?

In the present work, we address this challenge by using the Building-block Flow Model (BFM) for large-eddy

simulation (LES) [7]. BFM is a unified SGS and wall model for LES that devises the flow as a collection of building

blocks. The core assumption of the model is that simple canonical flows contain the essential physics to provide accurate

predictions in more complex flows [1, 2]. It is also envisaged to provide accurate results with coarse resolutions which

are affordable for industrial applications.

The BFM is developed with the framework of wall-modeled LES (WMLES), which has recently gained momentum

as a tool for aerospace applications [8]. Goc et al. [9] have shown that WMLES is approaching the accuracy and

computational efficiency demanded by the aerospace industry. While state-of-the-art WMLES performs satisfactorily

in turbulent boundary layers with sufficient grid resolution, its performance deteriorates in the presence of less than 20

grid points per boundary layer thickness. Unfortunately, the latter grid resolution is typical for external aerodynamics

applications [6, 10]. The results from the 4th High Lift Prediction Workshop [5] have also evidenced the deficiencies

of state-of-the-art WMLES in the context of aircraft aerodynamics, e.g., error cancellation, non-monotonic grid

convergence/independence, and lack of clear best practices, to name a few. Even meshes with more than 350 million

control volumes, which are too costly for routine industrial design cycle, are unable to accurately predict the wind

tunnel measurements. The goal of the BFM is to improve the accuracy and computational efficiency of WMLES across

multiple flow regimes.

The BFM is implemented using artificial neural networks (ANNs) within the supervised learning paradigm, which

has been extensively explored for modeling in recent years. For example, SGS models have been trained using data

from filtered direct numerical simulation (DNS) [11, 12]. Examples of supervised learning for wall modeling include

Yang et al. [13], Zhou et al. [14], Zangeneh [15] and Huang et al. [16], to name a few. Interestingly, most studies

to date have trained the model with data from higher-fidelity simulations, such as DNS or wall-resolved LES. As a

consequence, previous models ignored the nonnegligible errors arising from the numerical discretization in actual

WMLES. An exception is the work by Bae and Koumoutsakos [17] using reinforcement learning. Here, we take

advantage of a novel data preparation process to ensure numerical consistency between the training data and the model

deployed in the flow solver. Additionally, most of the models cited above are limited to simple flow configurations and

rely on information about the flow that is typically inaccessible in real-world applications, such as the boundary-layer

thickness. One exception is the ML wall model introduced by Lozano-Durán and Bae [2], which is directly applicable

to arbitrary complex geometries and provides the foundations for the BFM.

This paper is organized as follows. Section III details model formulation, training procedure, and simulation setup.

Results for the CRM-HL are presented in Section IV. Finally, concluding remarks are offered in Section V.
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III. Methodology

A. Model overview

The main modeling hypothesis of the BFM is that the SGS physics of complex flows can be locally mapped into

the small scales of simpler canonical flows [7]. Therefore, the BFM is capable of accurately predicting the statistical

properties of complex flows as long as the canonical flows used for training the model are representative of the (missing)

SGS flow physics. A detailed discussion about the modeling assumptions of the BFM can be found in Lozano-Durán

and Bae [2]. Here, we test the ability of a limited collection of simple canonical flows to model the flow over the

CRM-HL. The model architecture is summarized in Fig. 1.

In the version of the model considered here∗, the classifier categorizes the flow into different types of canonical

flows, and the predictor provides the wall shear stress and eddy viscosity based on the likelihood of each category. Four

types of building-block flows are considered: laminar channel flow, fully developed turbulent channel flow, turbulent

Poiseuille-Couette flow with adverse pressure gradient, and turbulent Poiseuille-Couette flow with “separation”.

The anisotropic component of the SGS stress tensor is given by the eddy-viscosity model

ḡ = −2aC S̄, (1)

where S̄ is the rate-of-strain tensor. The eddy viscosity is assumed to be a function of the invariants of the velocity

gradient tensor [18]

aC = 5 (�1, �2, �3, �4, �5, �6, \), (2)

where 5 represents an ANN, and \ denotes additional input variables, namely, a, Δ and D ‖, where a is the kinematic

viscosity, Δ is the characteristic grid size and D ‖ is the magnitude of the wall-parallel velocity measured with respect

to the wall. The invariants of rate-of-strain and rate-of-rotation tensors (R̄) are defined as

�1 = tr
(

S̄2
)

, �2 = tr
(

R̄2
)

,

�3 = tr
(

S̄3
)

, �4 = tr
(

S̄R̄2
)

,

�5 = tr
(

S̄2R̄2
)

, �6 = tr
(

S̄2R̄2S̄R̄
)

.

(3)

The predictor is divided into two types of ANNs as shown in Fig. 2: a near-wall ANN and an outer-region ANN.

The near-wall ANN is responsible for the control volumes in contact with the wall and utilizes the wall-parallel velocity

as input. The predictions for the control volumes away from the wall are performed by the outer-region ANN. The

mapping between inputs and output is learned from data generated from controlled WMLES simulations, which are

detailed in Section III.B.

The input and output variables of the ANN are given in non-dimensional form. The non-dimensionalization of

the input and output features is attained by using parameters that are local in both time and space to guarantee the

applicability of the model to complex geometries. Two cases are considered. For the near-wall predictor, the input

and output quantities are non-dimensionalized using viscous scaling (a and Δ). For the outer-region predictor, the

input and output variables are non-dimensionalized using semi-viscous scaling [(
√

2S̄ : S̄a)1/2 and Δ]. The BFM is

implemented in charLES, a finite-volume, compressible flow solver with Voronoi gridding capabilities. Readers are

referred to [9] for more details about charLES.

B. Building-block flows and data preparation

Figure 1 illustrates the collection of building-block flows. The Poiseuille flow is used to generally represent laminar

flows. The turbulent channel flow models the regime where turbulence is fully developed without significant mean-

pressure gradient effects. In both cases, the bottom and top walls are static. In the turbulent Poiseuille-Couette flows,

the top wall moves at a constant speed (DC ) in the streamwise direction, and an adverse pressure gradient is applied in

the direction opposed to the top wall velocity. The adverse pressure gradient ranges from mild to strong, so that the

flow “separates” (i.e., zero wall shear stress) on the bottom wall.

The training data is generated using WMLES with an exact-for-the-mean eddy-viscosity and wall model denoted

by ESGS. This enables the model to account for the numerical errors of the flow solver. More details about ESGS

can be found in Lozano-Durán and Bae [2]. The ESGS model is based on the anisotropic minimum-dissipation SGS

model [19] combined with a controller that iteratively adjusts the eddy viscosity to match the DNS mean velocity

∗BFM-v0.1.0
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Fig. 1 Schematic of the building-block flow model (BFM). The panel shows the classifier-predictor structure

and the ANN architecture. The flow state refers to (�1, ..., �6, a,Δ, D | |) and different ANNs are used for the

inner and outer layer. The bottom of the figure depicts the building-block flows considered (from left to right):

turbulent channel flow, Poiseuille-Couette flow with mild adverse pressure gradient, Poiseuille-Couette flow with

separation, and laminar Poiseuille flow.

νt...

Ii, i = 1, ..., 6

∆

ν

u‖

Near-wall predictor

NB classifier

Label

νt...

Ii, i = 1, ..., 6

ν

∆

Outer region predictor

Fig. 2 Schematic of the two types of ANNs used by the building-block flow model.
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Case '4g !G/ℎ !I/ℎ '4?

C550 547 4c 2c N/A

C950 943 4c 2c N/A

C2000 2003 4c 2c N/A

4200 4179 4c 2c N/A

PC0 6 2c c 680

PC100 120 2c c 340

Table 1 Parameters of the controlled WMLES used for training the BFM. The cases are labeled as C['4g]

for turbulent channel flows and as PC['4g] for turbulent Poiseuille-Couette flows. '4g is the friction Reynolds

number. For turbulent PC flow, '4g is based on the shear stress of the bottom wall. !G and !I are streamwise and

spanwise length of the channel, and ℎ is the channel height. The grid size of WMLES is #G×#H×#I = 66×12×34

for all cases. The laminar cases used for training are not included in the table.

profile. A Dirichlet non-slip boundary condition is applied at the walls and the correct wall shear stress is enforced by

augmenting the eddy viscosity at the walls such that

aC |F =

(

mD̄

mH

)�

�

�

�

−1

F

gF

d
− a (4)

following Bae and Lozano-Durán [20]. For turbulent channel flows, the mean DNS quantities are obtained from the

database by Jimenéz and coworkers [21–23]. Four cases with friction Reynolds numbers 550, 950, 2000 and 4200

are used. For the turbulent Poiseuille-Couette flows, our in-house code is used to generate DNS data [24]. Two

cases (labeled as PC0 and PC100) are considered, which correspond to separation and adverse pressure gradient,

respectively. The Reynolds numbers based on the adverse pressure gradient are ReP =

√

ℎ3d%/dG/a = 680 and 340,

and the Reynolds number based on the top wall velocity is ReU = DCℎ/a = 22, 360. The computational domain is

!G × !H × !I = 4cℎ × 2ℎ × 2cℎ for channel flows and !G × !H × !I = 2cℎ × 2ℎ × cℎ for PC-0 and PC-2, where ℎ is

the channel half-height. The grid size for the WMLES cases with ESGS is Δ ≈ 0.2ℎ. The Table 1 provides a summary

of the cases used for training.

C. Predictor and classifier

The ANN architecture for the predictors is a fully connected feedforward neural network with 6 hidden layers and

40 neurons per layer. The ANNs were trained using stochastic gradient descent by randomly dividing training data into

two groups, the training set (80% of the data) and test set (20% of the data). For laminar flows, the eddy viscosity is

set to zero.

The classification of the flow at a given point is done in two steps. First, the flow is classified as turbulent or

laminar. If the flow is turbulent, it is further classified as zero-pressure-gradient wall turbulence (ZPG), adverse-

pressure-gradient wall turbulence (APG), or separated turbulent flow. A Naive Bayes classifier is employed whose

inputs are the non-dimensionalized invariants (together with D ‖ for the second classification). For the first classification,

the invariants are normalized with a and Δ, whereas for the second classification,
√

2S̄ : S̄ is used. The output of the

classifier is a label that is fed to the predictor, as shown in Fig. 1.

The classifier is trained with the same cases as the predictor in addition to synthetic data generated for laminar

Poiseuille flow at Reg = [5− 150]. The classifier is applied to all grid points to discern between turbulent and laminar

flow. The second classification is only applied to the points in contact with the wall. Fig. 3 shows the confusion matrix

for the classifier. The classifier shows 100% accuracy in the first classification. The numbers in the cells indicate the
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Fig. 3 Confusion matrix of the classifier for the first grid point off wall.

percentage of samples that are classified as a given class, showing that flows are predicted with > 75% accuracy. ZPG

and separated flow are predicted with > 80% accuracy, whereas the classification of APG flow exhibits lower accuracy.

D. Case description and computational set-up

The NASA CRM-HL is a geometrically complex aircraft that includes the bracketry associated with deployed flaps

and slats as well as a flow-through nacelle mounted on the underside of the wing. The simulations are performed in

free air at the Reynolds number of 5.49 million based on the mean aerodynamic chord and freestream velocity. The

freestream Mach number is 0.20. The results are compared with wind tunnel experimental data from Evans et al. [25]

corrected for free air conditions. Further details of the experimental set-up can be found in Lacy and Sclafani [26].

We follow the computational setup from Goc et al. [27]. A semi-span aircraft geometry is simulated and the

symmetry plane is treated with free-slip and no penetration boundary conditions. A uniform plug flow is used as the

inlet. A non-reflecting boundary condition with specified freestream pressure is imposed at the outlet [28]. The total

number of grid points is 40 million and the number of grid points per boundary layer thickness ranges from zero to

twenty. The reader is referred to Goc et al. [27] for more details about the gridding strategy.

We perform simulations of the CRM-HL using BFM at two angles of attack, U = 7.05◦ and 19.57◦, and compare

the lift, drag and pitching moment coefficients with experimental data and simulations from Goc et al. [27] using

Dynamic Smagorinsky model with the equilibrium wall model, labeled as DSM-EQWM. A slice of the grid is depicted

in Fig. 4.

IV. Results
Figure 5 displays the lift (�!), drag (��), and pitching moment (�" ) coefficients for BFM and DSM-EQWM

compared to experimental results. For U = 7.05◦, DSM-EQWM correctly predicts �! and �� . However, further

analysis has shown that this accurate prediction is coincidental and due to error cancellation when integrating the total

forces [27]. This is corroborated by the poor predictions of pitching moment by DSM-EQWM. The case of U = 19.57◦

corresponds to the angle of attack of maximum lift coefficient. DSM-EQWM underpredicts the �! , whereas the BFM

accurately predicts�! . The drag coefficient is overpredicted by both models, but the pitching moment computed using

the BFM is closer to the experimental values, suggesting that the BFM provides a more accurate distributionof the forces

over the wing. Inspection of the sectional pressure coefficient, shown in Fig. 6, indicates that the BFM maintains the

flow attached over a longer section of the wing compared to DSM-EQWM, which explains the enhanced performance
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Fig. 4 Geometry of the CRM-HL model and a cross-sectional view of the grid over the wing surface.

Fig. 5 (a) Lift, (b) drag and (c) pitching moment coefficients for CRM-HL. The black lines denote experimental

results, squares are for DSM-EQWM and circles are for the BFM.

of the BFM. Overall, the BFM offers improved and/or more consistent results than DSM-EQWM, especially close to

the stall. It is worth remarking that BFM has never ‘seen’ an aircraft-like flow or been trained in a case that resembles

an airfoil or a wing.

V. Conclusions

We have examined the performance of the building-block flow model (BFM)† [1] for large-eddy simulation in the

NASA Common Research Model. The model is devised to address the challenges faced by CFD in the industry, i.e.,

the need for accurate and robust solutions at an affordable computational cost. The core assumption of the BFM is that

the subgrid-scale physics of complex flows can be mapped into the physics of simpler canonical flows [2, 7].

The BFM comprises two components: one classifier and one predictor. The classifier is trained to place the flow

into separate categories, while the predictor outputs the modeled SGS/wall stress based on the likelihood of each

category. Unlike previous models, the training data are directly obtained from controlled WMLES with an ‘exact’

model for the mean quantities of interest to guarantee consistency with the numerical discretization and grid structure

of the solver. The model is applicable to complex geometries and is implemented using artificial neural networks.

In the current version tested, the model has been trained using a limited set of data from turbulent channel flows at

different Reg and turbulent Poiseuille-Couette flows with varying adverse pressure gradient and laminar flow.

The performance of the BFM in complex scenarios was evaluated in the NASA Common Research Model High-

†BFM-v0.1.0
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Fig. 6 Pressure coefficient at the 82% spanwise section of the wing for U = 19.57◦. Black × represents

experimental results, orange squares are for DSM-EQWM and blue circles are for the BFM.

Lift (CRM-HL). We have shown that, for the coarse resolution considered here, the BFM offers improvements in the

prediction of lift, drag, and pitching momentum coefficients compared to conventional SGS/wall models, especially

at high angle of attack. The main exceptions are the coincidentally accurate predictions of the lift coefficient by

conventional SGS/wall models due to error cancellation. To improve model performance, we will continue the training

of future versions of the BFM with additional cases to account for a richer collection of flow physics.
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